Sample Usage
Build Configurations
Account Configs
Table Configs
Table Configs
input_table_config = SnowflakeTableConfig(
warehouse="[SECRET]",
database="[SECRET]",
schema="[SECRET]",
table_name="[SECRET]",
)
evaluation_table_config = SnowflakeTableConfig(
warehouse="[SECRET]",
database="[SECRET]",
schema="AUTOML_TEST",
table_name="TEST_PERFORMANCE",
)
feature_importance_table_config = SnowflakeTableConfig(
warehouse="[SECRET]",
database="[SECRET]",
schema="AUTOML_TEST",
table_name="TEST_FEATURE_IMPORTANCE",
)
Model & Artifact Configs
Train AutoML Model
Train AutoML Model
automl(
snowflake_account_config,
aws_account_config,
input_table_config,
evaluation_table_config,
feature_importance_table_config,
model_config,
artifacts_cloud_save_config,
verbosity=1,
)
Success
Running AutoML...
Loading data from Snowflake...
AutoGluon infers your prediction problem is: [SECRET]
Data loaded from Snowflake with columns: [SECRET]
Validating data...
Data is valid.
Train and test sets built with shapes: [SECRET].
Building AutoGluon predictor...
AutoGluon predictor built.
Fitting AutoGluon predictor...
AutoGluon will gauge predictive performance using evaluation metric: [SECRET]
AutoGluon predictor fitted.
Evaluating AutoGluon predictor...
AutoGluon predictor evaluated.
Saving evaluation result to snowflake...
These features in provided data are not utilized by the predictor and will be ignored: [SECRET]
Evaluation result saved.
Calculating feature importances...
Feature importances calculated.
Saving feature importances to Snowflake...
Feature importances saved to Snowflake.
Saving artifacts to cloud...
Saving artifacts to ./TEST_MODEL...
Saving artifacts to S3 bucket='[SECRET]' with key_prefix='test_automl'...
Artifacts saved.
Artifacts saved to cloud.
Finished running AutoML.
Run Predictions on New Data
New Table Configs
Table Configs
new_input_table_config = SnowflakeTableConfig(
warehouse="[SECRET]",
database="[SECRET]",
schema="[SECRET]",
table_name="[SECRET]",
# You can also specify a query to load data from Snowflake
sql_query="SELECT * FROM [SECRET] SAMPLE(1000 ROWS)",
)
output_table_config = SnowflakeTableConfig(
warehouse="[SECRET]",
database="[SECRET]",
schema="AUTOML_TEST",
table_name="TEST_OUTPUTS",
# Warning: be careful when setting this to True,
# as it will overwrite the table if it already exists.
force_replace_table=True,
)
Run Predictions on New Data
predict(
snowflake_account_config,
aws_account_config,
new_input_table_config,
output_table_config,
artifacts_cloud_save_config,
verbosity=1,
)
Success
Running AutoML Predictor...
Artifacts already downloaded to ./TEST_MODEL.
Downloading data from Snowflake...
Loading data from Snowflake...
Data loaded from Snowflake with columns: [SECRET]
Validating data...
Data is valid.
Data downloaded from Snowflake.
Calculating predictions...
Predictions calculated.
Saving predictions to Snowflake...
Predictions saved to Snowflake.
Finished running AutoML Predictor.